Books Should Be Free is now
Loyal Books
Search by: Title, Author or Keyword

# The First 498 Bernoulli NumbersBy: Simon Plouffe (1956-)

### First Page:

Mathematical constants and numbers edited by Simon Plouffe Associate Professor LaCIM, University of Quebec at Montreal http://www.lacim.uqam.ca/pi : Plouffe's Inverter plouffe@math.uqam.ca

The first 498 Bernoulli numbers are the coefficients of the series expansion of

texp(xt)/(exp(t) 1) = sum( B(n,x)/n!t^n, n=0..infinity ).

Bernoulli(2) 1/6

Bernoulli(4) 1/30

Bernoulli(6) 1/42

Bernoulli(8) 1/30

Bernoulli(10) 5/66

Bernoulli(12) 691/2730

Bernoulli(14) 7/6

Bernoulli(16) 3617/510

Bernoulli(18) 43867/798

Bernoulli(20) 174611/330

Bernoulli(22) 854513/138

Bernoulli(24) 236364091/2730

Bernoulli(26) 8553103/6

Bernoulli(28) 23749461029/870

Bernoulli(30) 8615841276005/14322

Bernoulli(32) 7709321041217/510

Bernoulli(34) 2577687858367/6

Bernoulli(36) 26315271553053477373/1919190

Bernoulli(38) 2929993913841559/6

Bernoulli(40) 261082718496449122051/13530

Bernoulli(42) 1520097643918070802691/1806

Bernoulli(44) 27833269579301024235023/690

Bernoulli(46) 596451111593912163277961/282

Bernoulli(48) 5609403368997817686249127547/46410

Bernoulli(50) 495057205241079648212477525/66

Bernoulli(52) 801165718135489957347924991853/1590

Bernoulli(54) 29149963634884862421418123812691/798

Bernoulli(56) 2479392929313226753685415739663229/870

Bernoulli(58) 84483613348880041862046775994036021/354

Bernoulli(60) 1215233140483755572040304994079820246041491/56786730

Bernoulli(62) 12300585434086858541953039857403386151/6

Bernoulli(64) 106783830147866529886385444979142647942017/510

Bernoulli(66) 1472600022126335654051619428551932342241899101/64722

Bernoulli(68) 78773130858718728141909149208474606244347001/30

Bernoulli(70) 1505381347333367003803076567377857208511438160235/4686

Bernoulli(72) 5827954961669944110438277244641067365282488301844260429/140100870

Bernoulli(74) 34152417289221168014330073731472635186688307783087/6

Bernoulli(76) 24655088825935372707687196040585199904365267828865801/30

Bernoulli(78) 414846365575400828295179035549542073492199375372400483487/3318

Bernoulli(80) 4603784299479457646935574969019046849794257872751288919656867/230010

Bernoulli(82) 1677014149185145836823154509786269900207736027570253414881613/498

Bernoulli(84) 2024576195935290360231131160111731009989917391198090877281083932477/3404310

Bernoulli(86) 660714619417678653573847847426261496277830686653388931761996983/6

Bernoulli(88) 1311426488674017507995511424019311843345750275572028644296919890574047/61410

Bernoulli(90) 1179057279021082799884123351249215083775254949669647116231545215727922535/ 272118

Bernoulli(92) 1295585948207537527989427828538576749659341483719435143023316326829946247/1410

Bernoulli(94) 1220813806579744469607301679413201203958508415202696621436215105284649447/6

Bernoulli(96) 211600449597266513097597728109824233673043954389060234150638733420050668349987 259/4501770

Bernoulli(98) 67908260672905495624051117546403605607342195728504487509073961249992947058239/6

Bernoulli(100) 945980378191221252952274330694937218727028415330669361333856962043113954151972 47711/33330

Bernoulli(102) 3204019410860907078243020782116241775491817197152717450679002501086861530836678 158791/4326

Bernoulli(104) 319533631363830011287103352796174274671189606078272738327103470162849568365549 721224053/1590

Bernoulli(106) 3637390317261741440815182015159342716923129864058169003893081637828187987338620 2346572901/642

Bernoulli(108) 346934224784782878955208865932385254139976678576049114687000589137150126631972 4897592306597338057/209191710

Bernoulli(110) 7645992940484742892248134246724347500528752413412307906683593870759797606269585 779977930217515/1518

Bernoulli(112) 265087960215509971335259721468516201444315149919250989645178842768096675651487 5515366781203552600109/1671270

Bernoulli(114) 2173783231936916333331076108665299147572115667909083136080611011493360548423459 3650904188618562649/42

Bernoulli(116) 309553916571842976912513458033841416869004128064329844245504045721008957524571 968271388199595754752259/1770